Diffusion Model for a Convective Layer. Part I: Numerical Simulation of Convective Boundary Layer

1986 ◽  
Vol 25 (10) ◽  
pp. 1445-1453 ◽  
Author(s):  
Wen-Yih Sun ◽  
Chiao-Zen Chang
2013 ◽  
Vol 724 ◽  
pp. 581-606 ◽  
Author(s):  
Scott B. Waggy ◽  
Sedat Biringen ◽  
Peter P. Sullivan

AbstractA direct numerical simulation (DNS) of an unstably stratified convective boundary layer with system rotation was performed to study top-down and bottom-up diffusion processes. In order to better understand near-wall dynamics associated with scalar diffusion in the absence of surface roughness, direct simulation is utilized to numerically integrate the governing equations that model the atmospheric boundary layer. The ratio of the inversion height to Obukhov length scale, ${z}_{i} / L= - 49. 1$, indicates moderately strong heating for the case studied. Two passive scalars were initialized in the flow field: the first with a zero gradient at the wall (${q}_{t} $, top-down diffusion), and the second with a non-zero wall gradient and a close-to-zero gradient at the height of the temperature inversion (${q}_{b} $, bottom-up diffusion). Scalar flux, variance and covariance profiles show good agreement between the DNS and rough-wall large-eddy simulation (LES). The top-down gradient function displays a slight increase in amplitude, indicating reduced mixing efficiency for the smooth-wall, low-Reynolds-number convective boundary layer. For the bottom-up process, the gradient matches other rough-wall simulations. The only notable difference between the smooth-wall DNS data and other rough-wall simulations is an increase in the gradient function near the wall. This indicates that the bottom-up gradient functions for a rough wall and a smooth wall are nearly identical except as the viscous sublayer is approached. Finally, a new empirical model for the scalar variance of a bottom-up scalar is proposed: here, a single function replaces two piecewise relationships to accurately capture the DNS results up to the viscous sublayer. The scalar covariance between top-down and bottom-up processes agrees with rough-wall and tree-canopy LES results; this indicates that the scalar covariance is independent of both Reynolds number and surface friction.


Author(s):  
A. V. Debolskiy ◽  
V. M. Stepanenko ◽  
A. V. Glazunov ◽  
S. S. Zilitinkevich

The paper discusses approaches to the construction of integral models of the convective boundary layer (CBL), based on the concept of complete mixing. To test analytic bulk models and the basic hypotheses of similarity, we use the results of eddy modeling (LES – Large Eddy Simulation). The empirical constants of the CBL integral models obtained according to the LES data for the case of free convection, are in good agreement with the previously published data of laboratory experiments. It is also shown that the flow of kinetic energy from the upper boundary of the CPS, carried out by gravitational waves, is small compared with other components of the balance of turbulent kinetic energy (TKE) in the convective layer. Parametrization of TKE generation for the case of sheared convective boundary layer in terms of the friction velocity and the average wind velocity in the CBL derived; resulting dimensionless constants are obtained from LES data. The results of the work allow us to formulate an integral model of the shear KPS suitable for practical use.


Sign in / Sign up

Export Citation Format

Share Document